

Integrated Climate and Hydrology Modelling - Catchment Scale Coupling of the HIRHAM Regional Climate Model and the MIKE SHE Hydrological Model

Morten A. D. Larsen^{#1}, Martin Drews[#], Jens C. Refsgaard^{*}, Karsten H. Jensen[^], Michael B. Butts⁺, Jens H. Christensen[×], Ole B. Christensen[×]

- *#* Technical University of Denmark, DTU Climate Centre ¹ Post Doc
- * Geological Survey of Denmark and Greenland
- ^ University of Copenhagen, Dep. of Geosciences and Natural Resource Management
- + DHI
- × Danish Meteorological Institute

Presentation outline

- General introduction to the subject of coupling of models
- HIRHAM setup and preparation
- MIKE SHE setup and calibration
- Coupled studies
- Conclusions and perspectives
- 1 DTU Management Engineering, Technical University of Denmark

Setting of study

"Observational records and climate projections provide abundant evidence that <u>freshwater resources are vulnerable</u> and have the potential to be strongly <u>impacted by climate change</u>, with wide-ranging <u>consequences for human</u> <u>societies and ecosystems</u>."

"Need for <u>knowledge on the interaction between water resources and the</u> <u>climate</u> in support of general decision making and management."

"Underlined in the light of the expected <u>global warming and increased extreme</u> <u>event frequency</u> to ensure proper climate adaption strategies."

Water and climate (change) implications

Agriculture/food production/water resources

Ecosystems (e.g. eutrophication and invading species)

Extreme precipitation/floods /infrastructure

Water resources/water quality/availability

Water and climate (change) - globally

Agriculture/food production/water resources

Ecosystems (e.g. eutrophication and invading species)

Extreme precipitation/floods

Water resources/quality

Water and climate (change)

"The ability to achieve <u>realistic projections</u> of both present and future climate and water resources <u>depends</u> largely on the <u>ability</u> to numerically <u>simulate</u> the <u>processes</u> of hydrology, energy and ecology between the <u>atmosphere, the land surface and the subsurface</u>. It is commonly recognized that these processes are explicitly <u>interconnected</u> and that their interaction is <u>highly complex</u>."

Landscapes and dynamics

<u>Aim of study:</u> To improve the overall simulation of climate and hydrology processes by the coupling of models

HIRHAM – setup study - domains

- 1. Find the optimal HIRHAM domain characteristics for the coupled setup
- 2. No definite rules on domain size, location and resolution

Model run	Resolution (km)	Domain size (km - lon x	Number of cells	
		lat)		
SIM1	5.5	1400x1400	252	
SIM2	11	1350x1350	122	
SIM3	11	2800x2800	252	
SIM4	5.5	1400x1400	252	
SIM5	5.5	2000x2000	362	
SIM6	11	4000x4000	362	
SIM7	11	4000x2800	362	
SIM8	12	5500x5200	452x432	

HIRHAM – setup study – Error/significance

Fig. 10 The significance levels of the bootstrap test. Upper row with random resampling in moving blocks, lower row with random resampling all over Denmark

HIRHAM - Low pressure occurences

Analysis area

Fig. 11 The movement of low pressures in 2008 in the area shared by all simulations. *Each line* shows the path of the centre of a low pressure event. No, max and mean represent number of occurrences within the domain, maximum travel time (h), mean travel time (h) respectively

-> Best domain for the coupling: 11 km resolution and 4000x2800 km size

<u>HIRHAM setup study</u>: Larsen, M. A. D., Thejll, P., Christensen, J. H., Refsgaard, J. C., and Jensen, K. H. (2013). On the role of domain size and resolution in the simulations with the HIRHAM region climate model, Clim. Dynam., 40, 2903–2918, doi:10.1007/s00382-012-1513-y.

MIKE SHE/SWET – setup study

400

300

100

Energy

Calibrate MIKE SHE including SWET land surface model component

Water balance – energy fluxes – spinup – sensitivity

Calibration completed under conditions of lacking energy balance closure

Coupled study

- 1. Couple models to include land surface-atmosphere interaction
- Effect of coupling data transfer interval variability extreme events

Coupled study

26 simulations

- 8 Coupled/Data transfer interval/ 6-12->120min.
- 8 Coupled/60 min./perturbed
- 8 Uncoupled/pertubed
- 2 <u>MIKE SHE</u>. Coupled one-way/Observation input

Coupled study – HIRHAM output

15 **DTU Management Engineering, Technical University of Denmark**

DTU Management Engineering, Technical University of Denmark

Coupled study – Precipitation

Coupled study – Time plots

Coupled study – More extreme periods

Coupled study – Conclusions

- In general; coupled results are poorer than uncoupled
 - HIRHAM and MIKE SHE calibrated and refined individually to reproduce observations
 - However -> the setup is feasible -> early stage study
 - Promising results for periods of higher rainfall
- Four of six climatic variables show improvements with higher frequency exchange
 - Precipitation is among these (difficult)
- No improvement noticable for MIKE SHE
- Variability is significant Covers 47% of improvement due to data exchange rate

Coupled study – Perspectives

- Coupled calibration
- Tested in non-severe conditions. Improvement in wet/dry conditons?
 - Different moisture regime (arid, tropics etc.)
- Climate projections (assess hydrological response including feedback)
- Anthropogenic effects
 - Land use changes
 - Irrigation/pumping
- Larger scale (larger catchment)
 - Larger scale processes (global radiation and surface pressure)
- Memory based data exchange -> computation speed
- Code improvments
 - Snow melt
 - Streamlining -> GUI, ease of use, stability

Location / moisture regime

Trenberth (1999)

The end

Thank you

24 **DTU Management Engineering, Technical University of Denmark**

Daily JJA and DJF evapotranspiration as a function of depth to water table

Results – statistics

			Discharge		Latent (LE) and Sensible (H) heat fluxes						
			Soenderskov	Ahlergaarde	Gjaldbaek	Agri.	Forest	Meadow	Agri.	Forest	Meadow
			Q (m ³ /s)	Q (m ³ /s)	Q (m ³ /s)	LE (W/m ²)	LE (W/m ²)	LE (W/m ²)	H (W/m ²)	H (W/m ²)	H (W/m ²)
RMSE	SCN1	2009/2010<	2.2	2.8	4.9	52.1	55.5	48.0	52.2	87.3	56.1
	SCN2	2009/2010	2.8	3.4	4.8 <	37.4	35.4	39.5	35.8	67.7	42.3
МАЕ	SCN1	2009/2010 <	1.6	2.2	3.5	29.7	32.4	29.4	37.2	62.5	40.7
	SCN2	2009/2010	2.1	2.7	3.5 <	21.8	21.0	24.9	26.2	45.4	29.5
Nash S (NS)	SCN1	2009/2010 <	0.01	0.63	0.61	0.42	0.58	0.58	0.23	0.44	0.44
	SCN2	2009/2010	0.35	0.48	0.61	0.44	0.66	0.46	0.33	0.32	0.40
Mean values	SCN1	2009/2010	6.8 (7.6)	12.7 (14.1)	20.1 (22.5)	51.0 (43.5)	48.6 (59.0)	52.7 (48.2)	20.1 (9.5)	34.8 (9.9)	25.3 (7.8)
	SCN2	2009/2010	7.3 (7.6)	13.6 (14.1)	21.5 (22.5) <	40.4 (31.8)	38.8 (41.7)	46.9 (35.0)	16.3 (7.0)	13.4 (7.0)	9.8 (5.7)

Paper 3+4 - results

	Variable	MAE abso lute change	MAE percentage change	MAE CV variability	MAE HUV variability	RMSE absolute change	RMSE percentage change	RMSE CV variability	RMSE HUV variability
HIRHAM output variables	PRECIP (mm/day)	0.3	8.3	0.2	0.2	1.1	16.4	0.7	0.6
	RH (%)	0.8	7.9	0.3	0.1	1.1	8	0.3	0.2
	WS (m/s)	0.1	5.4	0.0	0.0	0.2	5.8	0.5	0.1
	Rg (W/m²)	-0.1	-0.2	2.6	1.3	-0.1	-0.1	6.0	3.2
	Ta (Deg. C)	0.2	10.1	0.1	0.1	0.3	8.8	0.1	0.2
	Ps (hPa)	0.0	1.8	0.1	0.1	0.1	2.7	0.2	0.2
MIKE SHE output variables	LE (W/m²)	1.9	6.9	0.9	-	1.9	4.5	1.5	-
	H (W/m²)	-2.3	-7.4	0.5	-	-3.1	-6	1.5	-
	G (W/m²)	-0.1	-3.1	0.2	-	-0.7	-7.9	0.7	-
	Q (W ³ /s)	-0.4	-12.2	0.7	-	0.1	-0.1	2.2	-